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Synchronizability problem

Synchronizability problem

For S a system and C a class of MSC, do we have

L(S) ⊆ C ?

C can be, for a given k , the set of

� existentially-k-bounded MSCs

� universally-k-bounded MSCs

� k-synchronisable MSCs
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The interest of the synchronizability problem

Theorem [Brand and Zafiropoulo, 1983]

Communicating automata systems are Turing-equivalent.

Verification problems are indecidable

so the reachability problem is indecidable.
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Reachability problem

...

Under-approximation

Reachability problem

Is the configuration reachable from the initial

configuration ?
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Reachability problem

...

Under-approximation

Under-approximation

Problem applicated to a regular set ⇒
Reachability problem decidable
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Objective

Membership problem

Does the set of behaviors of the system correspond to the

under-approximation ?

Class pp mb

∃-k-bounded Decidable 1 Decidable 2

∀-k-bounded Decidable 1 Decidable 2

k-synchronizable Decidable 3 Décidable 3

1. [Genest et al., 2007]
2. [Bollig et al., 2021]
3. [Di Giusto et al., 2020]
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Decidability

In [Bollig et al., 2021], the proof of decidability for mailbox

∃ / ∀-k-bounded systems uses two concepts :

� the monadic second order logic

� the special treewidth of a graph
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Monadic Second Order Logic



Generalities

MSO Logic

� Extension of first-order logic : variables can represent sets.

� Restriction of second-order logic : only quantifications on

unary predicates.

� Allows to express properties on graphs

A graph class C is MSO-definable if there exists an

MSO-formula φ such that L(φ) = C.
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Grammar

Grammar :

φ :=x → y | x ◁ y | λ(x) = a | x = y |
x ∈ X | ∃x .φ | ∃X .φ | φ ∧ φ | ¬φ

When graphs are MSCs we have :

x , y events, a action, (first-order variables)

X set of events, (second-order variables)

φ formula ,

◁ relation between two matched actions,

→ order over events of the same process
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Example

A matched action :

matched(x) = ∃y , x ◁ y

Mailbox order :

x ⊏ y =
∨

q∈P,a,b∈Send( ,q, )

λ(x) = a ∧ λ(y) = b∧

((matched(x) ∧ ¬matched(y))∨
∃x ′,∃y ′(x ◁ x ′ ∧ y ◁ y ′ ∧ x ′ →+ y ′))
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Special treewidth



Generalities

Intuition

Specify how far a graph is from being a tree.

� Trees have a special treewidth of 1.

� A graph with a treewidth of k can be described by a

k-STT (Special Tree Term).

� If a graphs set has a bounded special treewidth, the

satisfiability of an MSO-formula on this set is decidable.
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k-STT

Syntax

τ := i | Addi ,j τ | Adda
i τ | Forgeti τ | τ ⊕ τ

� color

� add edge between nodes of color i and j

� add label to nodes of color i (message or process)

� forget color i

� union of two term if there is no common color

If an STT uses k + 1 colors, it is a k-STT.
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Example of k-STT

Create a new node :

Addp
i Adda

i i = (i , a, p)

An arbitrary graph :

τ = Add1,3Add2,1(Add0,1((0, a, q)⊕ (1, c , p))⊕
Add2,3((2, b, p)⊕ (3, d , p)))
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Example of k-STT

An arbitrary graph :

τ = Add1,3Add2,1(Add0,1((0, a, q)⊕ (1, c , p))⊕
Add2,3((2, b, p)⊕ (3, d , p)))

Add1,3

Add2,1

⊕

Add0,1 Add2,3

⊕ ⊕

(0, a, q) (1, c , p) (2, b, p) (3, d , p)

(0, a, q) (1, c , p)

(2, b, p) (3, d , p)

12/22

12



Example

For a tree :

ap

bq c r d s (0, a, p) (1, b, q)

⊕

Forget1 (1, c , r)

⊕

Forget1 (1, d , s)

⊕
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Decomposition game for special treewidth

For a given graph and a given k , we check that the graph has

a special treewidth of k . Here, k = 3.

1) Eve has k + 1 colors and put it on

nodes.
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Decidability proof of

synchronizability for existentially

bounded systems



Synchronizability problem

Synchronizability problem

For S a system and C a class of MSC, do we have

L(S) ⊆ C ?

This problem is decidable if :

1. C is MSO-definable

2. C is has a k bounded treewidth
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Example with ∃-B-mailbox bounded MSCs

We choose C the class of ∃-B-mailbox bounded MSCs.

1. Is C MSO-definable ?

- We are looking for a formula verifying that there exists a

linearization ∃-B bounded and runnable with a mailbox

communication.

2. Does C have a k bounded treewidth ?

- Can we find a bound such that all ∃-B-mailbox bounded

MSCs have a special treewidth of at most k .

16/22

16



1. Is C MSO-definable ?

A MSC is ∃-B-mailbox bounded if (→ ∪◁ ∪ ⊏ ∪ rev−→k)
∗ is

acyclic.

� we have seen that ⊏ is MSO-definable

�

rev−→k makes the link between a reception and the sending

of the k-th reception which follows it.

� r
rev−→k s = ∃r1, r2, · · · , rn, r → r1 → r2 → · · · → rn∧s◁rn

So C is MSO-definable.
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2. Does C have a k bounded treewidth ?

We can prove that for all ∃-B-mailbox bounded MSCs in a

system, we can bound the special treewidth by

k = B | P |2 + | P |
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Eve’s strategy for C

A ∃-2-mailbox bounded MSC

Let’s show that it has a special treewidth of 3

(3 < 2× 32 + 3 = 21).
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Example with ∃-B-mailbox bounded MSCs

We chose C the class of ∃-B-mailbox bounded MSCs.

1. Is C MSO-definable ? → Yes

2. Does C have a k bounded treewidth ? → Yes

⇒ The synchronizability problem is decidable for this class.
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Conclusion

� Decidability proof for synchronizability problem.

� This method works with different classes, as long as they

are MSO-definable and with a bounded special treewidth.

� It has a drawback : if the k is not passed as a parameter,

it does not help to find an adequate kr ”Is there a k such that our system is

∃-k-mailbox-bounded ?” is an open problem.
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